

LF51 (Lead-Free)

KNN Piezoceramic Material

Description

LF51 is a lead-free piezoceramic formulation based on the potassium sodium niobate system (KNN). It offers properties close to hard-doped PZT ceramics, with a higher permittivity than LF52.

Key Features and Benefits

- Lead-Free Product
- High Mechanical Quality Factor

Ideal Applications

- High-Power Transmitters
- Therapeutics (HIFU, Surgery, Dental)
- Ultrasonic Cleaning, Cutting and Welding

Property	Symbol	Unit	Value
Relative Free Dielectric Constant (1 kHz)	$\mathcal{K}^{\sigma}_{33}$	-	1100
Dielectric Dissipation Factor (1 kHz)	tan δ	-	0.01
Curie Temperature	T_{C}	°C	230
Density	ρ	g/cm³	4.59
Mechanical Quality Factor	Q_{m}	-	725
Coupling Coefficients	$k_{_{\mathrm{p}}}$	-	0.29
	$k_{_{\mathrm{t}}}$	-	0.30
	K ₃₁	-	0.17
	k ₃₃	-	0.39
Piezoelectric Charge Coefficient (Displacement Coefficient)	d ₃₁	pC/N	-50
	d ₃₃		120
	d ₁₅		190
Frequency Constants	$N_{\rm p}$	Hz·m	3400
	$N_{\rm t}$		3000
	N ₃₁		2500
	N ₃₃		2400