


Data Sheet

Pz12 (Lead-Free)

NBT-BT Piezoceramic Material

Description

Pz12 is a lead-free piezoceramic formulation based on the sodium bismuth titanate-barium titanate system (NBT-BT). It has been developed as a lead-free alternative to traditional hard-doped PZT ceramics and is available for customers who are looking to replace the lead-containing piezoceramics in their applications.

Key Features and Benefits

- Lead-Free Product
- Candidate for Replacing Hard-Doped PZT

Ideal Applications

- Underwater Transmitters
- Therapeutic Medical Ultrasound
- Ultrasonic Cleaning, Cutting and Welding

Property	Symbol	Unit	Value
Relative Free Dielectric Constant (1 kHz)	K_{33}^{σ}	-	700
Dielectric Dissipation Factor (1 kHz)	tan δ	-	0.027
Depoling Temperature	$T_{\rm d}$	°C	200
Recommended Operating Range	T<	°C	120
Density	ρ	g/cm³	5.7
Mechanical Quality Factors	Q_{mp}	-	185
	Q_{mt}	-	170
Coupling Coefficients	k_{p}	-	0.17
	$k_{\rm t}$	-	0.41
Piezoelectric Charge Coefficient (Displacement Coefficient)	$d_{_{33}}$	pC/N	110
Frequency Constants	$N_{\rm p}$	Hz·m	2700
	$N_{\rm t}$	Hz·m	2400
Acoustic Impedance	$Z_{\rm a}$	MRayl	30

©2024 CTS Corporation. Information subject to change. No warranty that product(s) will meet stated speficications for customer specific applications or test equipment. Visit www.ctscorp.com for list of applicable patents, more information or to request a quote.