

Linear Actuators Damage Tolerant Stacks

Features

- Fuse technology ensuring high reliability
- Displacement up to 128.7 μm
- Very high force in the kN range
- High stiffness for short response times (<1ms)
- Height up to 80 mm

Applications

- Micro- and nanopositioning
- Industrial equipment
- Active vibration control

- Valves
- Laser tuning
- Shaker

Description

CTS tape cast multilayer piezoelectric linear actuators are ideal for a wide range of electronic designs requiring precise and fast movement. The fuse technology is an effective way to ensure high reliability for critical applications. Thanks to the technology of damage tolerant piezo actuator stacks, the application keeps working even if a section of the actuator is damaged. The fuse technology fuses out any damaged ceramic element and the remaining ceramic elements of the stack continue to operate.

Standard Product, add-ons or Custom Solution

This document contains information about the CTS standard multilayer damage tolerant stacks and available addons. All the CTS multilayer products can be custom designed to match specific requirements – find more information on <u>www.ctscorp.com</u> or contact your local sales representative.

Product Designation

NAC5021-H20-A01


Specifications

Product series	NAC5021-HXX	NAC5022-HXX	NAC5023-HXX	Unit
Length (L)	7 +0.35/-0.15 10 +0.40/-0.20 15 +0.50/-0.30			mm
Width (W)	7 +0.35/-0.15 10 +0.40/-0.20 15 +0.50/-0.30			mm
Max width/length (W_M)	9.56 Max	12.8 Max	17.9 Max	mm
Height (H)	6 to 70* +/-0.2 or 1% (whichever is largest)	6 to 80* +/-0.2 or 1% (whichever is largest)	6 to 80* +/-0.2 or 1% (whichever is largest)	mm
Operating voltage, V _{max}	200			V
Blocking force, 0 to V_{max}	2060 +/-20%	4200 +/-20%	9450 +/-20%	Ν
Max. operating temp.	150			°C
PZT material	NCE51F			-
External electrodes	Screen-printed silver, tinned copper bus-wire			-

* See the different height options and corresponding free displacement and capacitance data in the tables below.

Drawing

Note: product represented with wires in A01 configuration.

Damage Tolerant Stacks

NAC5021-Hxx				
Height	Free Stroke	Capacitance		
+/-0,2 mm or 1%*	+/-15%	+/-15%		
mm	μm	nF		
6	6.6	400		
8	9.9	590		
10	13.2	790		
12	16.5	990		
14	19.8	1190		
16	23.1	1390		
18	26.4	1580		
20	29.7	1780		
22	33.0	1980		
24	36.3	2180		
26	39.6	2380		
28	42.9	2570		
30	46.2	2770		
32	49.5	2970		
34	52.8	3170		
36	56.1	3370		
38	59.4	3560		
40	62.7	3760		
42	66.0	3960		
44	69.3	4160		
46	72.6	4360		
48	75.9	4550		
50	79.2	4750		
52	82.5	4950		
54	85.8	5150		
56	89.1	5350		
58	92.4	5540		
60	95.7	5740		
62	99.0	5940		
64	102.3	6140		
66	105.6	6340		
68	108.9	6530		
70	112.2	6730		

www.ctscorp.com

Page 4 of 12

NAC5022-Hxx		NAC5023-Hxx		
Height	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0,2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
6	6.6	790	6.6	1750
8	9.9	1190	9.9	2620
10	13.2	1580	13.2	3490
12	16.5	1980	16.5	4370
14	19.8	2380	19.8	5240
16	23.1	2770	23.1	6110
18	26.4	3170	26.4	6980
20	29.7	3560	29.7	7860
22	33.0	3960	33.0	8730
24	36.3	4360	36.3	9600
26	39.6	4750	39.6	10480
28	42.9	5150	42.9	11350
30	46.2	5540	46.2	12220
32	49.5	5940	49.5	13100
34	52.8	6340	52.8	13970
36	56.1	6730	56.1	14840
38	59.4	7130	59.4	15710
40	62.7	7520	62.7	16590
42	66.0	7920	66.0	17460
44	69.3	8320	69.3	18330
46	72.6	8710	72.6	19210
48	75.9	9110	75.9	20080
50	79.2	9500	79.2	20950
52	82.5	9900	82.5	21830
54	85.8	10300	85.8	22700
56	89.1	10690	89.1	23570
58	92.4	11090	92.4	24440
60	95.7	11480	95.7	25320
62	99.0	11880	99.0	26190
64	102.3	12280	102.3	27060
66	105.6	12670	105.6	27940
68	108.9	13070	108.9	28810
70	112.2	13460	112.2	29680
72	115.5	13860	115.5	30560
74	118.8	14260	118.8	31430

RevC_0524

www.ctscorp.com

Page 5 of 12

Damage Tolerant Stacks

76	122.1	14650	122.1	32300
78	125.4	15050	125.4	33170
80	128.7	15440	128.7	34050

* whichever is largest

Stack heights exceeding listed values on request.

www.ctscorp.com

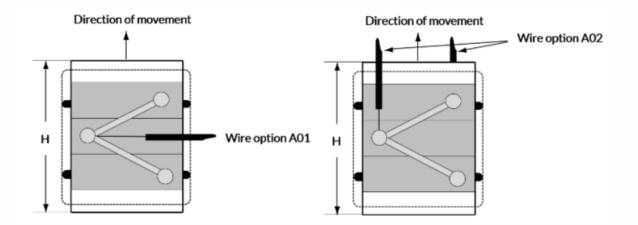
Add-ons

Wire Options

When you order damage tolerant actuator stacks from CTS, they are delivered with wires. Therefore, when you order, you have to select one of our wire options. However, you should consider these parameters, when you select a wire for connection:

- Operation voltage
- Intensity of current
- Operating temperature
- Environment for example vacuum

We recommend wires with PTFE insulation


PTFE wires can stand temperatures above 200 °C, whereas PVC wires only resist temperatures up to 80 °C. We recommend PTFE for the thermal and chemical resistance of the insulation.

For vacuum and cryogenic applications, we recommend Kapton wires, which offer superior outgassing and flexibility.

Standard wire options for Damage Tolerant Stacks

Two standard wire options are available:

	Option A01	Option A02		
Wire type	MIL-W-16878/4, 28 A	MIL-W-16878/4, 28 AWG, 7 strands		
Length	200mm +/-10	200mm +/-10mm		
Position	Middle of the a	Middle of the actuator		
Direction	Perpendicular to the height	Toward the top		

www.ctscorp.com

Page 7 of 12

The wire gauge (AWG) and insulation type should be determined according to the voltage, current and operating environment. Should the standard –A01 or –A02 configuration not suit your application, we offer several alternative wire types:

Wire type	Voltage rating	Approx. outer diameter	Rec. max. current	Min. operating temperature
	[V]	[mm]	[A]	[°C]
32AWG, MIL-W-16878/6, 7 strands	250	0.6	0.53	-60
30AWG, MIL-W-16878/4, 7 strands	600	0.8	0.86	-60
28AWG, MIL-W-16878/4, 7 strands	600	0.9	1.4	-60
28AWG, Allectra 311-KAPM-035 (Kapton insulation, UHV)	1000*	0.5	1.0	-269
22AWG, BS3G210 Type A, 19 strands	300	1.1	8	-75

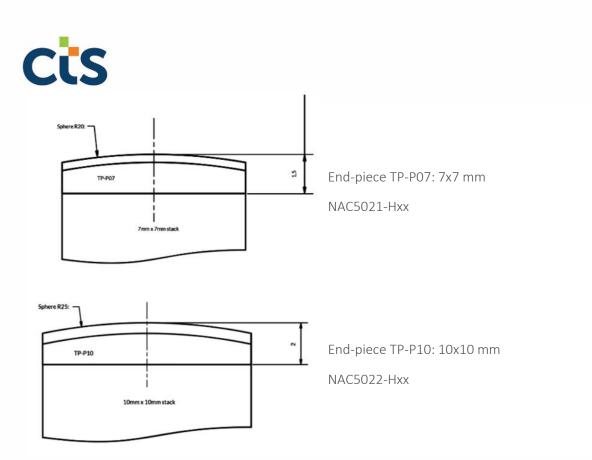
* In vacuum conditions

As part of our custom program, we can also stock specific wire.

Reduced tolerances

For demanding applications, piezoelectric actuators can be re-worked after stacking in order to achieve better geometrical and dimensional properties. CTS offer this customization possibility for damage tolerant stacks with cross sections of 7x7 mm and 10x10 mm.

Product series	Standard height tolerance	Reduced height tolerance
NAC5021	+/-0.2mm or +/-1%*	+/-0.040mm
NAC5022	+/-0.2mm or +/-1%*	+/-0.050mm

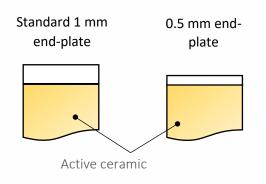

* whichever is largest

End-pieces

Metallic end-pieces can be useful in terms of:

- Spreading a high mechanical load on the whole surface of an actuator
- Providing some de-coupling, i.e. allowing a stack to tilt
- Centering an actuator in an assembly

CTS stock end-pieces for our most popular cross-sections (5x5, 7x7 and 10x10 mm). The material is stainless steel (AISI 316). These products are compatible with:



The design is compact, with spherical caps providing some de-coupling, thereby releasing the requirements on alignment. The parts are low-magnetic and compatible with our other add-ons. End-pieces can be attached at one or both ends of a stack. They can be supplied with a short lead-time and are more cost-effective for small series.

End-plates

As a standard, damage tolerant stacks are supplied with 1mm thick ceramic end-plates. All our standard endplates and end rings are produced with our piezoceramic material NCE51. Ceramic provides ideal electrical insulation properties, low thermal expansion mismatch as well as good mechanical properties to spread the load over the surface of the active piezoceramic. We recommend a thickness of 1 mm for a good spread of the load.

It is nevertheless possible to use different configurations as illustrated below:

www.ctscorp.com

Page 9 of 12

Add-ons

We recommend storing piezoelectric ceramic components in a cool and dry environment to avoid tarnishing of the silver electrodes. The ceramic material itself is not affected by humidity, as long as no voltage is applied. If components have been stored in uncontrolled environment, we recommend drying them thoroughly before use. Heat drying is well adapted, for example 24h at 110°C, if possible in low-pressure environment.

Piezoelectric components can be stored for many years without problem. Piezoelectric ceramic is subject to aging from the date of poling, meaning that performance (capacitance, stroke) will decrease according to a logarithmic trend, typically 2-5% per decade (after 1 day, 10 days, 100 days...).

Handling

Although damage tolerant stacks are protected by a sleeve, piezoelectric ceramic components are fragile and must be handled with care. We recommend to:

- Prevent the components from hitting each other or hard surfaces, keep components separate
- Particularly for tall, narrow stacks, make sure that no bending is induced
- Use plastic tweezers and tools rather than metallic ones
- Use gloves to avoid contamination
- Do not apply excessive force on the pre-attached wires

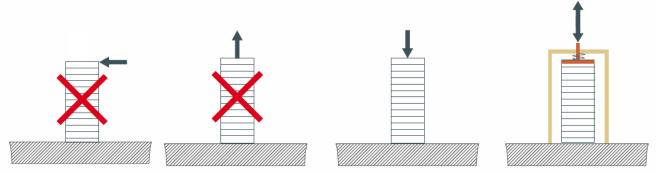
When submitted to a force or to temperature changes, be aware that piezoelectric components will generate charge (i.e. voltage when in open circuit), so they must be properly discharged before use. Always discharge through a resistor rather than shorting the wires, as it would create high dynamic forces that can damage the component. It is recommended to keep larger components short-circuited during shipment and storage to avoid charge build-up.

Cleaning

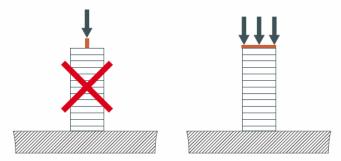
Damage tolerant stacks are fitted with a protective sleeve and should not require cleaning. For the cleaning of the ceramic end-plates, we recommend isopropyl-alcohol (propanol) or ethanol. Be aware of solvent running under the protective sleeve. The components have to be thoroughly dried before use.

Mounting

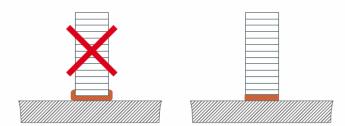
Damage tolerant stacks offer flat and parallel surfaces for mounting. The actuators may be mounted either by mechanical clamping or using adhesive.


General recommendations

Piezoelectric ceramics can tolerate high compressive stress, but only limited tensile stress. CTS actuators can be safely operated without preload in quasi-static conditions, however preload is required to achieve the specified stiffness and dynamic performance. We recommend at least 5 MPa preload for quasi-static applications, 10 MPa for dynamic applications and up to 40 MPa in specific high loading conditions.


We recommend to avoid tensile stress, which could result from direct pulling, inertial forces or bending forces. If pull or bending forces cannot be avoided, the actuator must be properly pre-stressed to ensure tensile stress is eliminated. Refer to our online tutorial for additional information on the estimation of stack loads.

Mount and Connect

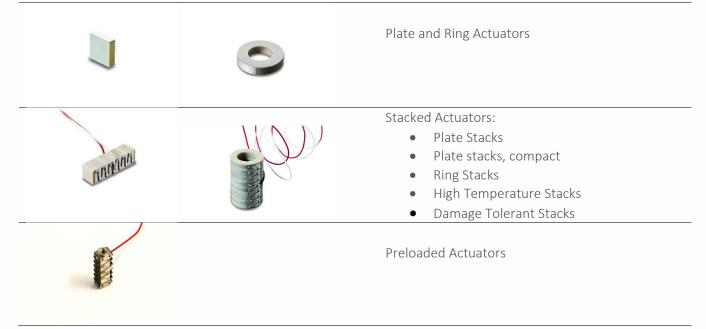


The mechanical load must be applied on the full surface of the actuator in order to avoid stress concentrations.

Mounting using adhesive

Epoxy adhesives are well suited for mounting piezoceramics. For linear actuators, we recommend using a semisoft (Shore D hardness 50-70), non-conductive, unfilled epoxy. When bonding, it is important to ensure a very thin glue line between the actuator and the substrate. It is recommended to apply a pressure, e.g. 2-5 MPa, during the curing process. To avoid significant loss of performance, the mounting should avoid adhesive on the sides of the actuator.

Connecting and Driving


Damage tolerant stacks are easily connected using the attached wires. Ensure that the stacks are properly discharged and that there is no voltage on the output when connecting to a driver. Voltage differences will generate current peaks that can damage the actuator or the driver.

The current capability of the driver must be adapted to the driving signal. Due to the capacitive nature of the piezoelectric actuator, fast motion will often require very high currents. Please refer to our online tutorial for guidance about current calculation.

We recommend to add a resistance in series with the actuator to form a RC circuit to limit the peak current, bandwidth and eventual noise that may be generated by the driver.

Linear Actuators Product Families

Learn more about the different linear actuators product families on www.ctscorp.com.