

Linear Actuators Plate Stacks, compact design

Features

- Free displacement up to 128.7 μm
- Very low operating voltages (down to 60V)
- Very high force in the kN range
- High stiffness for short response times (<1ms)
- Height up to 80 mm
- Continuous operation up to 150°C
- Wide range of add-ons

Applications

- Micro- and nanopositioning
- Industrial equipment
- Active vibration control

- Valves
- Laser tuning
- Shaker

Description

CTS tape cast multilayer piezoelectric linear actuators are ideal for a wide range of electronic designs requiring precise and fast movement. CTS multilayer piezoelectric plate actuator stacks can be stacked to fit the needed height or stroke. Maximum height and stroke are 80 mm and 128.7 μ m for our standard products and with a capacitance up to 34050 nF depending of the height of the plate stack. The specific stroke and capacitance of each product can be found below.

Standard Product, add-ons or Custom Solution

This document contains information about the CTS standard multilayer plate stacks and available add-ons. All the CTS multilayer products can be custom designed to match specific requirements – find more information on <u>www.ctscorp.com</u> or contact your local sales representative.

Product Designation NAC4013-H20-A01

Specifications

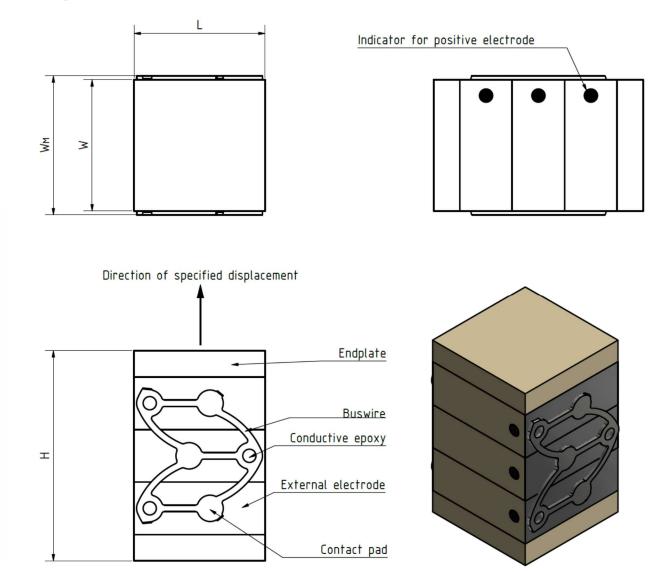
Common parameters for the product series:

Product series	NAC4001-HXX	NAC4011-HXX	NAC4002-HXX	NAC4012-HXX	Unit
Length (L)	2 +0.3	2 +0.30/-0.10		3 +0.30/-0.10	
Width (W)	2 +0.3	2 +0.30/-0.10		0/-0.10	mm
Max width (W _M)	3.00 Max		4.00 Max		mm
Height (H)	4 to 20* +/-0.20 or 1% (whichever is largest)		4 to 30* +/-0.20 or 1% (whichever is largest)		mm
Operating voltage, V_{max}	60	150	60	150	V
Blocking force, 0 to V_{max}	168	+/-20%	378 +/-20%		N
Operating temp. range		-40 to 150			
Material	NCE51F		NCE51F		-
External electrodes	Screen-pri	Screen-printed silver-palladium, tinned copper-beryllium bus-wire			

Product series	NAC4003-HXX	NAC4013-HXX	NAC4014-HXX	NAC4024-HXX	Unit
Length (L)	5 +0	5 +0.30/-0.10		7 +0.35/-0.15	
Width (W)	5 +0	5 +0.30/-0.10		/-0.15	mm
Max width (W_M)	6.00 Max		8.00 Max		mm

Height (H)	4 to 50* +/-0.20 or 1% (whichever is largest)		4 to 70* +/-0.20 or 1% (whichever is largest)		mm
Operating voltage, V_{max}	60	150	150	200	V
Blocking force, 0 to V_{max}	1050	+/-20%	2060 +/- 20%		N
Operating temp. range	-40 to 150			°C	
Material	NCE51	NCE51F	NCE51F	NCE51F	_
External electrodes Screen-printed silver-palladium, tinned copper-beryllium bus-wire				_	

Product series	NAC4015-HXX	NAC4025-HXX	NAC4026-HXX	Unit	
Length (L)	10 +0	0.40/-0.20	15 +0.50/-0.30	mm	
Width (W)	10 +0.40/-0.20		15 +0.50/-0.30	mm	
Max width (W _M)	11	.00 Max	16.00 Max	mm	
Height (H)	4 to 80* +/-0.20 or 1% (whichever is largest)		4 to 80* +/-0.20 or 1% (whichever is largest)	mm	
Operating voltage, V_{max}	150	200	200	V	
Blocking force, 0 to V_{max}	4200	0 +/- 20%	9450 +/- 20%	N	
Operating temp. range	-40 to 150			°C	
Material	NCE51F				
External electrodes	Scree	Screen-printed silver, tinned copper-beryllium bus-wire			


* See the different height options and corresponding free displacement and capacitance data in the tables below.

Data are specified for room temperature and static operating conditions. Performance for dynamic operation or higher/lower temperature operation must be determined by experiment.

This product contains materials which present health hazards by inhalation or ingestion. Do not attempt to disassemble, grind or melt the product and dispose of according to local regulations. Based on information provided by our suppliers, CTS designates this product as RoHS compliant.

Drawing

Mounting, Connecting and Driving

Please refer to our online tutorials for recommendations about mounting, connecting and driving plate stacks.

Stacking Options

	NAC400	D1-Hxx	NAC40)11-Hxx
Height (H)	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0.2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
4	2.6	130	2.8	20
6	5.1	260	5.6	40
8	7.7	380	8.4	60
10	10.2	510	11.2	90
12	12.8	640	14.0	110
14	15.3	770	16.8	130
16	17.9	890	19.6	150
18	20.4	1020	22.4	170
20	23.0	1150	25.2	190

* whichever is largest

	NAC4002-Hxx		NAC40)12-Hxx
Height (H)	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0.2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
4	2.9	360	3.1	60
6	5.7	720	6.3	120
8	8.6	1080	9.4	190
10	11.4	2160	12.5	250
12	14.3	2520	15.7	310
14	17.1	2880	18.8	370
16	20.0	3240	21.9	430
18	22.8	3600	25.1	490
20	25.7	3240	28.2	560
22	28.5	3600	31.4	620
24	31.4	3960	34.5	680
26	34.2	4320	37.6	740
28	37.1	4680	40.8	800
30	39.9	5040	43.9	860

* whichever is largest

	NAC400)3-Hxx	NAC40)13-Hxx
Height	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0.2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
4	3	1030	3.3	180
6	6	2050	6.6	360
8	9	3080	9.9	540
10	12	4100	13.2	720
12	15	5130	16.5	900
14	18	6160	19.8	1080
16	21	7180	23.1	1260
18	24	8210	26.4	1440
20	27	9230	29.7	1620
22	30	10260	33.0	1810
24	33	11290	36.3	1990
26	36	12310	39.6	2170
28	39	13340	42.9	2350
30	42	14360	46.2	2530
32	45	15390	49.5	2710
34	48	16420	52.8	2890
36	51	17440	56.1	3070
38	54	18470	59.4	3250
40	57	19490	62.7	3430
42	60	20520	66.0	3610
44	63	21550	69.3	3790
46	66	22570	72.6	3970
48	69	23600	75.9	4150
50	72	24620	79.2	4330

* whichever is largest

	NAC4014-Hxx		NAC40)24-Hxx
Height	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0.2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
4	3.3	340	3.3	200
6	6.6	680	6.6	400
8	9.9	1030	9.9	590
10	13.2	1370	13.2	790
12	16.5	1710	16.5	990
14	19.8	2050	19.8	1190
16	23.1	2390	23.1	1390
18	26.4	2740	26.4	1580
20	29.7	3080	29.7	1780
22	33.0	3420	33.0	1980

www.ctscorp.com

Page 6 of 15

©2024 CTS Corporation. Information/product(s) subject to change. No warranty that product(s) will meet the stated specifications for customer specific applications or test equipment. Visit www.ctscorp.com for list of applicable patent(s), more information, or to request a quote.

24	36.3	3760	36.3	2180
26	39.6	4100	39.6	2380
28	42.9	4450	42.9	2570
30	46.2	4790	46.2	2770
32	49.5	5130	49.5	2970
34	52.8	5470	52.8	3170
36	56.1	5810	56.1	3370
38	59.4	6160	59.4	3560
40	62.7	6500	62.7	3760
42	66.0	6840	66.0	3960
44	69.3	7180	69.3	4160
46	72.6	7520	72.6	4360
48	75.9	7870	75.9	4550
50	79.2	8210	79.2	4750
52	82.5	8550	82.5	4950
54	85.8	8890	85.8	5150
56	89.1	9230	89.1	5350
58	92.4	9580	92.4	5540
60	95.7	9920	95.7	5740
62	99.0	10260	99.0	5940
64	102.3	10600	102.3	6140
66	105.6	10940	105.6	6340
68	108.9	11290	108.9	6530
70	112.2	11630	112.2	6730

* whichever is largest

	NAC4015-Hxx		NAC40)25-Hxx
Height	Free Stroke	Capacitance	Free Stroke	Capacitance
+/-0.2 mm or 1%*	+/-15%	+/-15%	+/-15%	+/-15%
mm	μm	nF	μm	nF
4	3.3	680	3.3	400
6	6.6	1370	6.6	790
8	9.9	2050	9.9	1190
10	13.2	2740	13.2	1580
12	16.5	3420	16.5	1980
14	19.8	4100	19.8	2380
16	23.1	4790	23.1	2770
18	26.4	5470	26.4	3170
20	29.7	6160	29.7	3560
22	33.0	6840	33.0	3960

www.ctscorp.com

Page 7 of 15

©2024 CTS Corporation. Information/product(s) subject to change. No warranty that product(s) will meet the stated specifications for customer specific applications or test equipment. Visit www.ctscorp.com for list of applicable patent(s), more information, or to request a quote.

24	36.3	7520	36.3	4360
26	39.6	8210	39.6	4750
28	42.9	8890	42.9	5150
30	46.2	9580	46.2	5540
32	49.5	10260	49.5	5940
34	52.8	10940	52.8	6340
36	56.1	11630	56.1	6730
38	59.4	12310	59.4	7130
40	62.7	13000	62.7	7520
42	66.0	13680	66.0	7920
44	69.3	14360	69.3	8320
46	72.6	15050	72.6	8710
48	75.9	15730	75.9	9110
50	79.2	16420	79.2	9500
52	82.5	17100	82.5	9900
54	85.8	17780	85.8	10300
56	89.1	18470	89.1	10690
58	92.4	19150	92.4	11090
60	95.7	19840	95.7	11480
62	99.0	20520	99.0	11880
64	102.3	21200	102.3	12280
66	105.6	21890	105.6	12670
68	108.9	22570	108.9	13070
70	112.2	23260	112.2	13460
72	115.5	23940	115.5	13860
74	118.8	24620	118.8	14260
76	122.1	25310	122.1	14650
78	125.4	25990	125.4	15050
80	128.7	26680	128.7	15440

* whichever is largest

NAC4026-Hxx					
Free Stroke	Capacitance				
+/-15%	+/-15%				
μm	nF				
3.3	870				
6.6	1750				
9.9	2620				
13.2	3490				
16.5	4370				
	Free Stroke +/-15% μm 3.3 6.6 9.9 13.2				

RevC_0124

www.ctscorp.com

Page 8 of 15

©2024 CTS Corporation. Information/product(s) subject to change. No warranty that product(s) will meet the stated specifications for customer specific applications or test equipment. Visit www.ctscorp.com for list of applicable patent(s), more information, or to request a quote.

19.8	5240
23.1	6110
26.4	6980
29.7	7860
33.0	8730
36.3	9600
39.6	10480
42.9	11350
46.2	12220
49.5	13100
52.8	13970
56.1	14840
59.4	15710
62.7	16590
66.0	17460
69.3	18330
72.6	19210
75.9	20080
79.2	20950
82.5	21830
85.8	22700
89.1	23570
92.4	24440
95.7	25320
99.0	26190
102.3	27060
105.6	27940
108.9	28810
112.2	29680
115.5	30560
118.8	31430
122.1	32300
125.4	33170
128.7	34050
	23.1 26.4 29.7 33.0 36.3 39.6 42.9 46.2 49.5 52.8 56.1 59.4 62.7 66.0 69.3 72.6 69.3 72.6 75.9 79.2 82.5 85.8 85.8 89.1 92.4 95.7 99.0 102.3 105.6 108.9 112.2 115.5 118.8 122.1 125.4

* whichever is largest

Stack heights exceeding listed value on request.

Add-ons

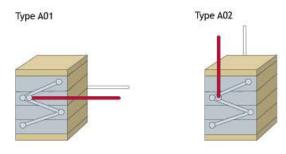
Wire Options

When you order actuators from CTS, you can have wires fitted to save time and money. However, you should consider these parameters, when you select a wire for connection:

- Operation voltage
- Intensity of current
- Operating temperature
- Environment, for example vacuum

We recommend wires with PTFE insulation

PTFE wires can stand temperatures above 200 °C, whereas PVC wires only resist temperatures up to 80 °C. We recommend PTFE for the thermal and chemical resistance of the insulation.


For vacuum and cryogenic applications, we recommend Kapton wires, which offer superior outgassing and flexibility.

Standard wire options for Plate Stacks

Two standard wire options are available:

		Option A01	Option A02
	NAC4001, NAC4011, NAC4002, NAC4012	MIL-W-16878/6, 32 /	AWG, 7 strands
NAC4014 NAC4015	NAC4003, NAC4013		
	NAC4014, NAC4024	MIL-W-16878/4, 28 AWG, 7 strands	
	NAC4015, NAC4025		
	NAC4026		
Length		200mm +/-10mm	
Position		Middle of the actuator	
Direction		Perpendicular to the height	Toward the top

Wires: White (-) Red (+)

The wire gauge (AWG) and insulation type should be determined according to the voltage, current and operating environment. Should the standard –A01 or –A02 configuration not suit your application, we offer several alternative wire types:

Wire type	Voltage rating	Approx. outer diameter	Rec. max. current	Min. operating temperature
	[V]	[mm]	[A]	[°C]
32AWG, MIL-W-16878/6, 7 strands	250	0.6	0.53	-60
30AWG, MIL-W-16878/4, 7 strands	600	0.8	0.86	-60
28AWG, MIL-W-16878/4, 7 strands	600	0.9	1.4	-60
28AWG, Allectra 301-KAPM-035 (Kapton insulation, UHV)	7500*	0.58	1.0	-269
22AWG, BS3G210 Type A, 19 strands	300	1.1	8	-75

* In vacuum conditions

As part of our custom program, we can also stock specific wire.

UHV preparation

Ultra high vacuum (UHV) is the vacuum regime characterized by pressures lower than about 10^{-7} pascal or 100 nanopascals (~ 10^{-9} torr). Extreme cleanliness and low outgassing are essential parameters in sustaining the vacuum level in such systems. Elevated temperature compatibility is often needed since water vapour and other trace gasses are removed from the system during a "bake-out".

CTS piezoceramic components are designed to support system development and integration of piezo technology in UHV applications. Among many technical capabilities, CTS is competent in producing piezoelectric actuators meeting the demands on temperature compatibility and out gassing levels set by UHV operation.

For low outgassing, Kapton-insulated wires are recommended. In addition, with the UHV preparation the products will undergo a specific cleaning process and be packaged in sealed pouches.

Reduced tolerances

For demanding applications, piezoelectric actuators can be re-worked after stacking in order to achieve better geometrical and dimensional properties. CTS offer this customization possibility for stacks with cross sections of 5x5 mm, 7x7 mm and 10x10 mm.

Product series	Standard heigh tolerance	Reduced height tolerance
NAC4003	+/-0.2mm or +/-1%*	+/-0.025mm
NAC4013		
NAC4014	+/-0.2mm or +/-1%*	+/-0.040mm
NAC4024		
NAC4015	+/-0.2mm or +/-1%*	+/-0.050mm
NAC4025		
kuulaialaavan ia langaat		

* whichever is largest

In addition, it is possible to re-work the length or specify a smaller maximum width. These possibilities are available through our custom program.

Strain-gauge

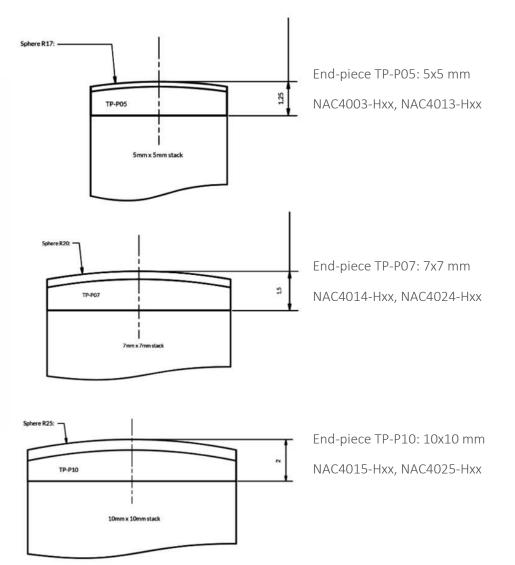
A strain gauge is a simple way of obtaining feedback on the deformation of a piezoelectric actuator, typically to achieve closed-loop control. Strain gauges are recommended for experimental setups and small series. CTS offer a standard version for piezo plate actuators (single and stacked) which is designed as a half bridge with two grids at 90°. The strain gauge is a very compact solution and can therefore be fitted to actuators with a free surface of 5x5 mm or bigger, i.e. series NAC4003/NAC4013 and above.

The characteristics of the strain gauge are:

Strain gauge parameters	
Nominal resistance	350 Ω
Nominal sensitivity	1 mV/V
Maximal range of deformation	2%
Deformation range of the actuator	0.1– 0.2 % Depending on the actuator type
Temperature range	-40 - +150 °C
Recommended supply voltage	5 V AC or DC Depending on temperature range and heating of the gauge

The bandwidth of the measurement system will depend on the signal conditioner that is used. A conditioner with a carrier frequency will typically have a cutoff frequency below 200Hz. "DC" type conditioners have a wider bandwidth but are more sensitive to noise.

The strain gauge has a range of 2% strain while the stack typically generates 0.18% strain (at room temperature). Therefore the output range will be about 9% of the full range. The nominal gauge factor specified by the manufacturer is 1.99+/-2%. However if quantitative measurements are required, it is recommended to perform an initial characterization of the strain-gauge directly in the application using an external sensor.

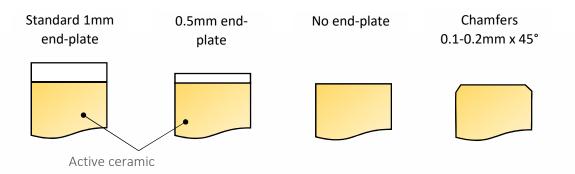


Metallic end-pieces can be useful in terms of:

- Spreading a high mechanical load on the whole surface of an actuator
- Providing some de-coupling, i.e. allowing a stack to tilt
- Centering an actuator in an assembly

CTS stock end-pieces for our most popular cross-sections (5x5, 7x7 and 10x10 mm). The material is stainless steel (AISI 316). These products are compatible with:

The design is compact, with spherical caps providing some de-coupling, thereby releasing the requirements on alignment. The parts are low-magnetic and compatible with our other add-ons (UHV, wires etc.). End-pieces can



be attached at one or both ends of a stack. They can be supplied with a short lead-time and are more costeffective for small series.

End-plates

As a standard, piezoelectric stacks are supplied with 1mm thick ceramic end-plates. All our standard end-plates and end rings are produced with our piezoceramic material NCE51. Ceramic provides ideal electrical insulation properties, low thermal expansion mismatch as well as good mechanical properties to spread the load over the surface of the active piezoceramic. We recommend a thickness of 1mm for a good spread of the load.

It is nevertheless possible to use different configurations as illustrated below:

Note that stacks without end-plates or chamfers must not be mounted against a conductive surface, to avoid the risk of short-circuits between the surface electrodes.

Linear Actuators Product Families

Learn more about the different linear actuators product families on www.ctscorp.com.