

# CTS-CS-BAX-20-XXXX-H Current Sensor Module

## Features

- Low Hysteresis
- High Permeability
- Unipolar 5 V<sub>DC</sub> Power Supply
- Open Loop Hall-Effect Measurement
- Primary Current Range up to ±1500 A<sub>PK</sub>
- Temperature Range: -40 to 125°C
- Fully Ratio-Metric

## Advantages

- Excellent Accuracy
- Excellent Output Linearity ≤1 %FS
- Low Thermal Offset Drift ≤5 mV (T-0)
- Low Thermal Sensitivity Drift ≤1.2 %S (T-0)
- High Bandwidth ≥40 kHz
- Non-Intrusive Sensing (No Losses)
- Small Size, Lightweight

## Applications

- Inverters
- DC Link
- DC/DC Converters

## Description

The CTS-CS-BAX-20-XXXX-H is an analog open loop current sensor module designed for non-intrusive and galvanically isolated measurement of AC and DC currents. Thanks to its design, the CTS-CS-BAX-20-XXXX-H can be used in high power applications such as automotive traction inverters or DC/DC converters.



RoHS



# Ordering Information

| Product              | Option Code | Typical Sensitivity | Current Range         |
|----------------------|-------------|---------------------|-----------------------|
| CTS-CS-BAX-20-0250-H | 0250        | 8.00 mV/A           | ±250 A <sub>PK</sub>  |
| CTS-CS-BAX-20-0500-H | 0500        | 4.00 mV/A           | ±500 APK              |
| CTS-CS-BAX-20-1000-H | 1000        | 2.00 mV/A           | ±1000 A <sub>PK</sub> |
| CTS-CS-BAX-20-1500-H | 1500        | 1.33 mV/A           | ±1500 A <sub>PK</sub> |

Option Codes  $\Rightarrow$  Current Range. Current Range defines the peak current value.

CTS-CS-BAX-20-XXXX (Option Code)-H.

Contact CTS for custom current ranges/sensitivity.

# Absolute Maximum Ratings (uUpowered)

| Parameter                        | Symbol               | Value      | Unit | Condition    |
|----------------------------------|----------------------|------------|------|--------------|
| Positive Supply Voltage          | Vcc                  | +18        | V    |              |
| Reverse Supply Voltage           | V <sub>CC_REV</sub>  | -18        | V    |              |
| Positive Output Voltage          | Vout                 | +16        | V    |              |
| Reverse Output Voltage           | V <sub>OUT_REV</sub> | -6         | V    |              |
| Positive Output Current          | Ιουτ                 | 10         | mA   |              |
| Reverse Output Current           | I <sub>OUT_REV</sub> | -10        | mA   |              |
| Operating Ambient<br>Temperature | T <sub>A</sub>       | -40 to 125 | °C   |              |
| Storage Temperature              | Ts                   | -40 to 125 | °C   |              |
| ESD Human Body Model             | Uesd-hbm             | ±8         | kV   | JEDEC JS-001 |
| RMS Voltage, AC Insulation test  | U <sub>INS</sub>     | 2.5        | kV   | IEC 60664-1  |
| Clearance Distance               | D <sub>CL</sub>      | 4.5        | mm   |              |
| Creepage Distance                | Dcp                  | 7.5        | mm   |              |
| Comparative Tracking Index       | CTI                  | ≥ 600      | /    |              |

IMPORTANT: Exceeding the absolute maximum ratings may cause permanent damage to the sensor module. Exposure to absolute maximum-rated conditions for extended periods of time may affect sensor module reliability.



# Nominal Operating Ratings (Powered)

Operating Parameters  $T_A = -40$  to 125°C,  $V_{CC} = 5V\pm10\%$ , unless otherwise specified.

| Parameter                  | Symbol               | Condition                                                  | Min. | Тур. | Max. | Unit             |
|----------------------------|----------------------|------------------------------------------------------------|------|------|------|------------------|
| Supply Voltage             | Vcc                  | -                                                          | 4.5  | 5    | 5.5  | V                |
| Supply Current             | lcc                  | No output load                                             |      | 13   | 15   | mA               |
| Output Resistive Load      | RL                   | OUT to GND                                                 | 4.7  | 10   | -    | kΩ               |
| Output Capacitor Load      | CL                   | OUT to GND                                                 | -    | -    | 5    | nF               |
| Linear Output Range        | V <sub>OUTLIN</sub>  | $R_L \ge 10k\Omega$                                        | 10   | -    | 90   | %V <sub>CC</sub> |
| Output Quiescent Voltage   | V <sub>OQ</sub>      | $R_L \ge 10 k\Omega$ , $V_{CC} = 5V$                       | -    | 50   | -    | %V <sub>CC</sub> |
|                            | Vcc_uvdh             | TA = 25°C                                                  | 4.0  | 4.2  | 4.4  | V                |
| Onder-voltage Detection    | V <sub>CC_UVDL</sub> | TA = 25°C                                                  | 3.6  | 3.8  | 4.0  | V                |
| Over Veltege Detection     | Vcc_ovdh             | TA = 25°C                                                  | -    | 6.5  | -    | V                |
| Over-voltage Detection     | Vcc_ovdl             | TA = 25°C                                                  | -    | 6.0  | -    | V                |
| Output Voltage with Broken | Vbrk_l               | $R_L$ to GND, $R_L ≥ 10kΩ$ ,<br>V <sub>CC</sub> = 5V       | -    | 2    | 4    | %Vcc             |
| GND                        | Vbrk_h               | $R_L$ to $V_{CC}$ , $R_L \ge 10k\Omega$ ,<br>$V_{CC} = 5V$ | 96   | 98   | 100  | %Vcc             |

#### ELECTRICAL DIAGRAM



|    | Components list             |
|----|-----------------------------|
| IC | Hall sensor ASIC            |
| C1 | <b>Decoupling Capacitor</b> |
| C2 | Decoupling Capacitor        |

| Pin out |     |
|---------|-----|
| 1       | OUT |
| 2       | GND |
| 3       | VCC |
| 4       | OPT |



# **Current Ranges**

Operating Parameters  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5V\pm10\%$ , unless otherwise specified.

#### CTS-CS-BAX-20-0250-H

| Parameter                | Symbol | Condition                        | Min. | Тур. | Max. | Unit              |
|--------------------------|--------|----------------------------------|------|------|------|-------------------|
| Primary Current Range    | lp     | -                                | -250 |      | 250  | А                 |
| Sensitivity              | S      | $V_{CC} = 5V$                    |      | 8.00 |      | mV/A              |
| Output Quiescent Voltage | Voq    | $V_{CC} = 5V, R_L \ge 10k\Omega$ |      | 2.5  |      | V                 |
| RMS Output Noise         | Nrms   | $V_{CC} = 5V$                    | -    | 1.9  | -    | $mV_{\text{RMS}}$ |

#### CTS-CS-BAX-20-0500-H

| Parameter                | Symbol           | Condition                        | Min. | Тур. | Max. | Unit              |
|--------------------------|------------------|----------------------------------|------|------|------|-------------------|
| Primary Current Range    | lp               | -                                | -500 |      | 500  | А                 |
| Sensitivity              | S                | $V_{CC} = 5V$                    |      | 4.00 |      | mV/A              |
| Output Quiescent Voltage | V <sub>OQ</sub>  | $V_{CC} = 5V, R_L \ge 10k\Omega$ |      | 2.5  |      | V                 |
| RMS Output Noise         | N <sub>RMS</sub> | $V_{CC} = 5V$                    | -    | 0.9  | -    | $mV_{\text{RMS}}$ |

#### CTS-CS-BAX-20-1000-H

| Parameter                | Symbol           | Condition                        | Min.  | Тур. | Max. | Unit       |
|--------------------------|------------------|----------------------------------|-------|------|------|------------|
| Primary Current Range    | Iр               | -                                | -1000 |      | 1000 | А          |
| Sensitivity              | S                | $V_{CC} = 5V$                    |       | 2.00 |      | mV/A       |
| Output Quiescent Voltage | Voq              | $V_{CC} = 5V, R_L \ge 10k\Omega$ |       | 2.5  |      | V          |
| RMS Output Noise         | N <sub>RMS</sub> | $V_{CC} = 5V$                    | -     | 1.0  | -    | $mV_{RMS}$ |

#### CTS-CS-BAX-20-1500-H

| Parameter                | Symbol | Condition                        | Min.  | Тур. | Max. | Unit              |
|--------------------------|--------|----------------------------------|-------|------|------|-------------------|
| Primary Current Range    | IP     | -                                | -1500 |      | 1500 | А                 |
| Sensitivity              | S      | V <sub>CC</sub> = 5V             |       | 1.33 |      | mV/A              |
| Output Quiescent Voltage | Voq    | $V_{CC} = 5V, R_L \ge 10k\Omega$ |       | 2.5  |      | V                 |
| RMS Output Noise         | Nrms   | $V_{CC} = 5V$                    | -     | 0.7  | -    | $mV_{\text{RMS}}$ |



# **Accuracy Specifications**

Operating Parameters  $T_A = -40$  to 125°C,  $V_{CC} = 5V\pm10\%$ , unless otherwise specified.

| Parameter                    | Symbol                  | Condition                                   | Min.  | Тур. | Max. | Unit            |
|------------------------------|-------------------------|---------------------------------------------|-------|------|------|-----------------|
| Sensitivity Resolution       | S∆                      | T <sub>A</sub> = 25°C, V <sub>CC</sub> = 5V | -     | 1    | -    | %S              |
| Thermal Sensitivity Drift    | $\Delta^{T} S$          | $V_{CC} = 5V$                               | -1.25 | -    | 1.25 | %S              |
| Sensitivity Ratiometry Error | $\Delta^{R}S$           | V <sub>CC</sub> = 4.85 to 5.15V             | -0.55 | -    | 0.55 | %S              |
| Sensitivity Lifetime Drift   | $\Delta^{R}S_{LIFE}$    | T <sub>A</sub> = 25°C                       | -     | 0.5  | -    | %S              |
| Offset Resolution            | Voqa                    | TA = 25°C, V <sub>CC</sub> = 5V             | -5    | -    | 5    | mV              |
| Thermal Offset Drift         | $\Delta^{T} V_{OQ}$     | $V_{CC} = 5V$                               | -5    | -    | 5    | mV              |
| Offset Ratiometry Error      | $\Delta^{R}V_{OQ}$      | V <sub>CC</sub> = 4.85 to 5.15V             | -5    | -    | 5    | mV              |
| Offset Lifetime Drift        | $\Delta^{\!T}Voq\_life$ | T <sub>A</sub> = 25°C                       | -     | 0.5  | -    | mV              |
| Magnetic Sensitivity Drift   | $\Delta^{T}MS$          | $V_{CC} = 5V$                               | -     | 0.1  | -    | %S              |
| Magnetic Offset Drift        | $\Delta^{T}MHys$        | $V_{CC} = 5V, \pm I_P$                      | -0.2  | -    | 0.2  | %I <sub>P</sub> |
| Linearity Error              | NL                      | Full Range of I <sub>P</sub>                | -1    | -    | 1    | %I <sub>P</sub> |
| Step Response Time           | T <sub>R</sub>          | @ 100 A/µs                                  | -     | 2.5  | 5    | μs              |
| Frequency Bandwidth          | BW                      | @ -3 dB (output)                            | 40    | -    | _    | kHz             |
| Phase Shift                  | Δφ                      | @ DC to 1 kHz                               | 4     | -    | -    | 0               |



# Durability Specifications

Specifications are according to defined standards. Please contact us for more details.



# Dimensions

All the dimensions are expressed in [mm], unless otherwise specified.

#### NOTE: Dimensions are preliminary





## Disclaimer

The content of this document is believed to be correct and accurate but is being provided and furnished "AS IS" and should be understood that this document is for informational purposes only and that there are NO Representations and/or Warranties provided by CTS Corporation (CTS) as to the document's accuracy, nor about the results of its implementation. CTS assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Any Customer that relies upon or uses this document shall assume all risk and responsibility for any such use. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. CTS, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by CTS prevail over this disclaimer. This document is subject to change without notice and should not be construed as a commitment by CTS. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information and engage CTS for consultation beforehand. Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose. This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized, or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by CTS.