

Series 12CE 12mm Rotary Encoder w/Illuminated Shaft

- Compact 12mm package size
- Single, dual and tri-color LED backlit shaft
- Rotational life (30,000 cycles)
- Switch life (20,000 actuations)
- Variety of standard resolutions and detent options

Applications

- Consumer portable electronics
- Commercial appliances
- Instrument amplifiers and guitar effects
- Keyboards and synthesizers
- Communications equipment

Ordering Information

Series		LED ption	Terminal Configuration		Shaft ength		Shaft Trim	Re	solution	LE Co		Detent Option
12CE		3	Н		20		В		12	Т	-	Ν
		Code	(noo					Code	Spec.		Code	Spec.
		H	Spec. Vertical/Rear Moun	t				12	12 PPR		N	No Detents
			Thread Bushing, PC	Pins				24	24 PPR		12	12 Detents*
		K	Vertical/Rear Moun	t							24	24 Detents*
		ĸ	Sleeve Bushing, PC I	Pins			Code Sp				*Availabl	e w/12 PPR only
			Horizontal/Side Mo	unt		Code					**Availab	ole w/12 & 24 PI
		N	Sleeve Bushing, PC I	Pins,			Knurle					
			10mm Height			В	(18 te				,	
			Horizontal/Side Mo	unt		F	Flatte	,	Co	de ,	Spec.	
		Y	Thread Bushing, PC	Pins					1		Red	
			10mm Height						2		Blue	
-		•	-	0							Orange	
-	Code	Spec.	-	Code	Spec.*						White	
	1	1-Color	-	15	15 mm						Green	
-	-	(no switch)	-	16	16 mm						Blue/Orange	
	2	2-Color	-	17	17.5 mr				F		Green/Red	
-	-	(w/switch)	-	18	18.5 mr	n			(Blue/Green	
	3	3-Color	-	20	20 mm							
-	-	(w/switch)	-	21	21 mm				L		reen/Orange Blue/Red	
			_	24	24 mm				t			
			_	25	25 mm					Ke	d/Green/Blue	
				26	26 mm							

* See shaft length and trim options (LM) for availability by shaft trim.

www.ctscorp.com

Page 1 of 10

Sense

Encoder Specifications

	Min	Typical	Max	Unit
@ 0.5 mA	_	+5.0	_	VDC
2-bit quadrature				
100 MΩ min. @ 250 VD	C			
300 VAC for 1 min., no a	arcing			
12 or 24 PPR (pulses pe	r revolution)			
(See Fig. 1)				
≤ 3 ms				
≤ 2 ms				
(See Fig. 2)				
$\Delta T \ge 4 \text{ ms}$ (A leads B by	90° in the CW di	rection)		
$\Delta T \ge 3.5 \text{ ms}$ (A leads B b	by 90° in the CW (direction)		
360° continuous				
50 gf-cm (non-detent o	ption only)			
30° ± 3°				
15°±3°				
30 to 200 gf-cm				
4° max.				
1.0 x L/30mm p-p max.;	; L = Shaft Length			
5 kgf for 10 sec.				
2 kgf max.				
300 gf max.				
30,000 cycles @ 600 to	1,000 cycles/hr.			
	2-bit quadrature 100 M Ω min. @ 250 VD 300 VAC for 1 min., no 12 or 24 PPR (pulses per (See Fig. 1) \leq 3 ms \leq 2 ms (See Fig. 2) $\Delta T \geq$ 4 ms (A leads B by $\Delta T \geq$ 3.5 ms (A leads B by $\Delta T \geq$ 3.5 ms (A leads B br 360° continuous 50 gf-cm (non-detent or 30° ± 3° 15° ± 3° 30 to 200 gf-cm 4° max. 1.0 x L/30mm p-p max. 5 kgf for 10 sec. 2 kgf max. 300 gf max.		@ 0.5 mA-+5.02-bit quadrature100 MΩ min. @ 250 VDC300 VAC for 1 min., no arcing12 or 24 PPR (pulses per revolution)(See Fig. 1)≤ 3 ms≤ 2 ms(See Fig. 2)ΔT ≥ 4 ms (A leads B by 90° in the CW direction)ΔT ≥ 3.5 ms (A leads B by 90° in the CW direction)360° continuous50 gf-cm (non-detent option only) $30^\circ \pm 3^\circ$ $15^\circ \pm 3^\circ$ $30 \text{ to } 200 \text{ gf-cm}$ 4° max. $1.0 \times L/30mm p-p max.; L = Shaft Length$ $5 \text{ kgf for 10 sec.}$ 2 kgf max. 300 gf max.	\square \square \square \square \square 2-bit quadrature \square <td< td=""></td<>

Switch Specifications

		Min	Typical	Max	Unit
Voltage Rating	@ 10 mA	_	+5.0	_	VDC
Contact Resistance	100 mΩ max.				
Contact Arrangement	SPST Momentary				
Chatter	10 ms max.				
Switch Travel	0.5mm +0 mm / -0.3mm	ו			
Actuation Force	450 gf ± 200 gf				
Insulation Resistance	100 MΩ min. @ 250 VD	С			
Dielectric Strength	300 VAC for 1 min., no a	arcing			
Operating Life	20,000 actuations				
IP Rating	40				
Packaging	Tray. Thread Bushing ter	rminal (Code H ,	Y) furnish with was	her and nut in s	eparate package
Weight	3.7 grams				
- · · · · · · · · · · · · · · · · · · ·					

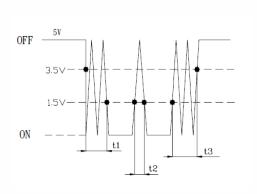
Environmental

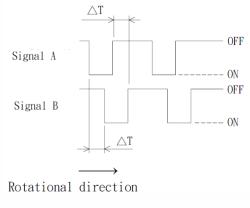
	Min	Typical	Max	Unit			
Operating Temperature	-10	_	+70	°C			
Storage Temperature	-30	_	+70	°C			
Soldering Conditions							
Wave Solder Preheat: 100°C max for 2 min max; Solder temperature: 260°C ± 5°C for							
	No clean foam flux recommended						
Manual Solder	350°C ± 5°C for 3 sec max.; Sn95Ag5 no clean solder						
Wash	Not recommended						
Moisture Sensitivity Level	1						
ESD Classification (HBM)	Not applicable						

All testing is performed at room ambient conditions except as noted. Users should verify device actual performance in their specific applications This product is compliant to RoHS3 Directive 2015/863 Amendments of Annex II on 31 March 2015, and REACH SVHC Directive EC 1907/2006 Amendments of Annex XIV & Annex XVII on 10 June 2022.

Custom and value-added options available on request. Please contact your sales representative for additional information.

2022-07-13 Rev. C


www.ctscorp.com


Page 2 of 10

Series 12CE 12mm Rotary Encoder w/Illuminated Shaft

Electrical Specifications

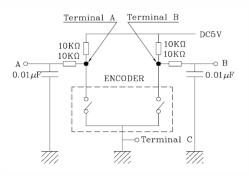


Figure 1: Contact Bounce/Chatter

Figure 2: Phase Difference

Figure 3: Suggested Filter Circuit

LED Specifications

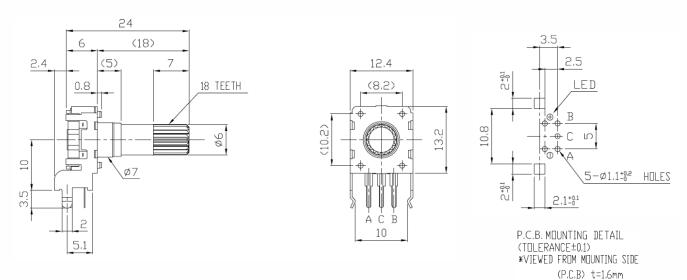
1 color

2 color

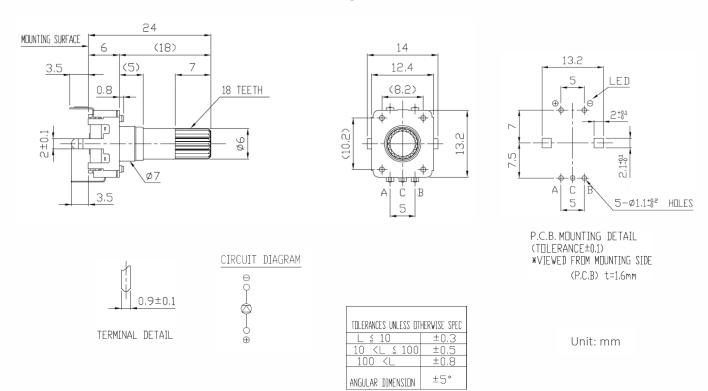
3 color

(+)

		Power Dissipation	DC Forward	Test Condition IF = 20 mA Forward Voltage (V)				
Emitted C	Emitted Color		Current					
		(mW)	(mA)	Minimum	Typical	Maximum		
Red		60	30	—	1.8	2.6		
Blue		72	20	_	3.2	3.6		
Orang	e	100	30	_	2.1	2.6		
White	5	72	20	—	3.2	3.6		
Greer	า	72	20	_	3.2	3.6		
Blue/Orange	Blue	72	20	2.7	3.3	3.7		
blue/oralige	Orange	60	25	1.7	2.0	2.4		
Green/Red	Green	95	25	27	3.3	3.7		
Green/Ked	Red	60	25	1.7	2.0	2.4		
Blue/Green	Blue	75	20	2.7	3.3	3.7		
blue/Green	Green	95	25	2.7	3.3	3.7		
Green/Orange	Green	95	25	2.7	3.3	3.7		
Green/Orange	Orange	60	25	1.7	2.0	2.4		
Blue/Red	Blue	75	20	2.7	_	3.3		
Brue/Reu	Red	60	25	1.7		2.4		
	Red	60	25	1.7	2.0	2.4		
Red/Green/Blue	Green	110	25	2.7	3.3	3.7		
	Blue	110	25	2.7	3.3	3.7		

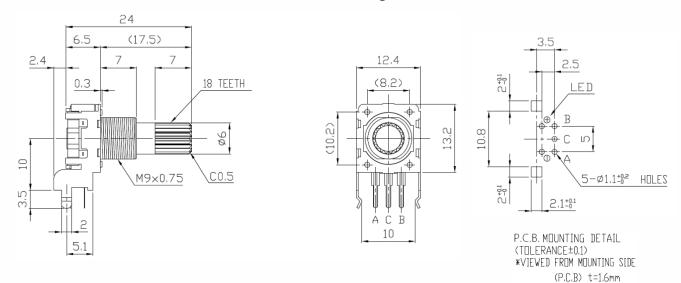

2022-07-13 Rev. C

www.ctscorp.com

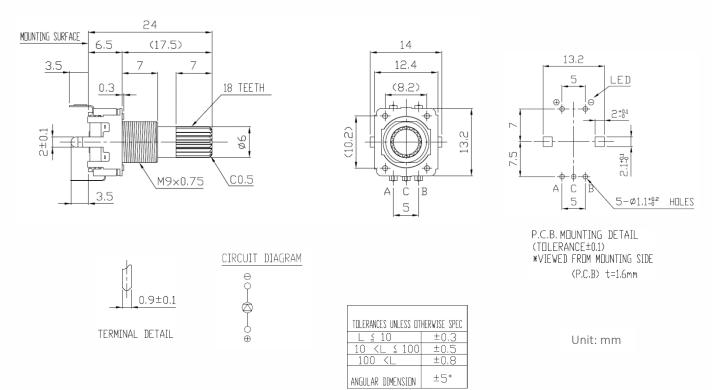

Page 3 of 10

Series 12CE Horizontal/Side Mount with Sleeve Bushing and 1-Color LED

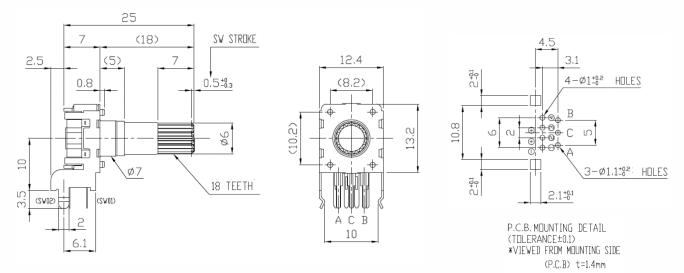
Series 12CE Vertical/Rear Mount with Sleeve Bushing and 1-Color LED

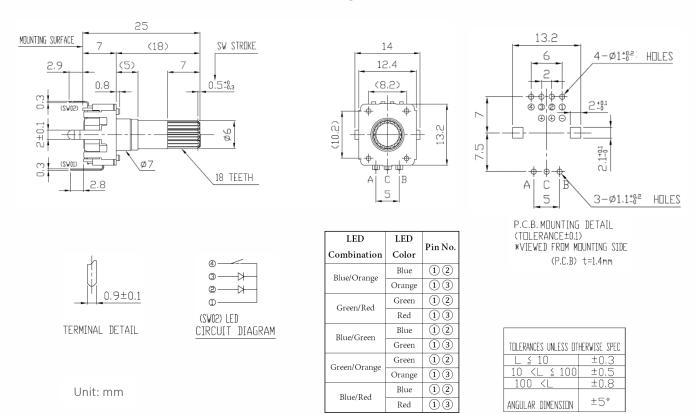

2022-07-13 Rev. C

www.ctscorp.com


Page 4 of 10

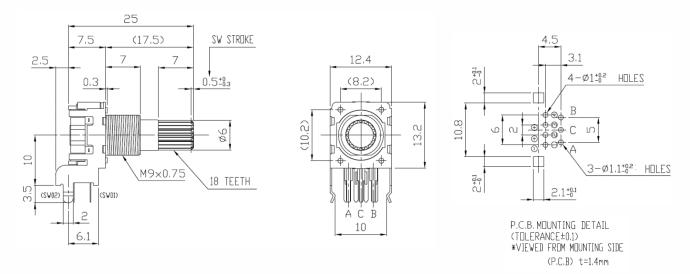
Series 12CE Horizontal/Side Mount with Threaded Bushing and 1-Color LED


Series 12CE Vertical/Rear Mount with Threaded Bushing and 1-Color LED

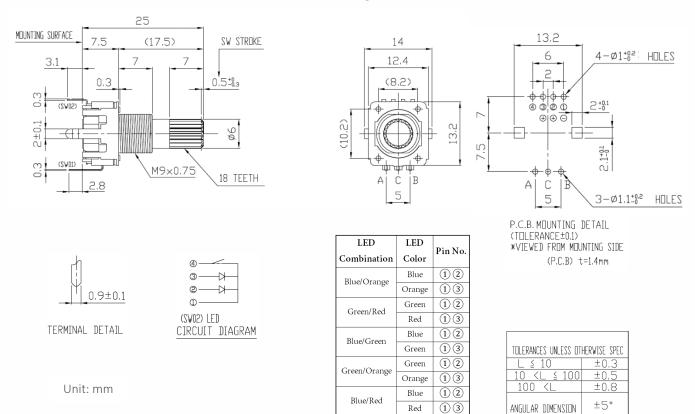

www.ctscorp.com

Series 12CE Horizontal/Side Mount with Sleeve Bushing and 2-Color LED

Series 12CE Vertical/Rear Mount with Sleeve Bushing and 2-Color LED

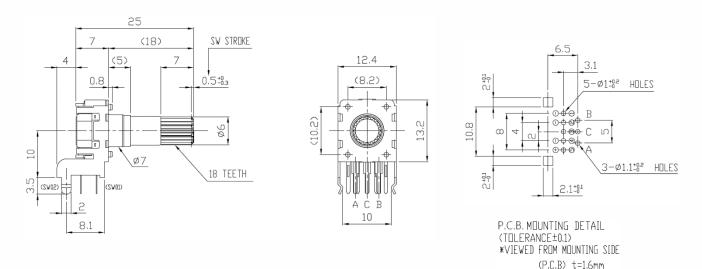

2022-07-13 Rev. C

www.ctscorp.com

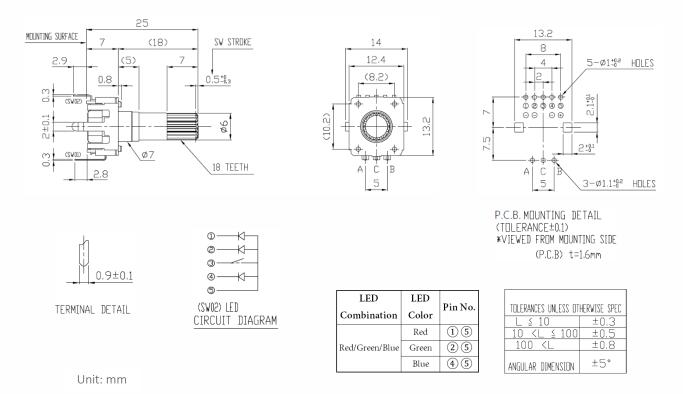

Page 6 of 10

Series 12CE Horizontal/Side Mount with Threaded Bushing and 2-Color LED

Series 12CE Vertical/Rear Mount with Threaded Bushing and 2-Color LED

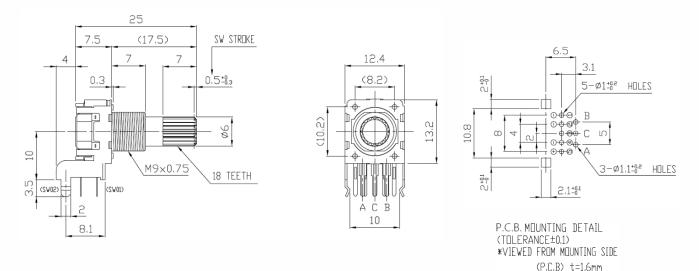

2022-07-13 Rev. C

www.ctscorp.com

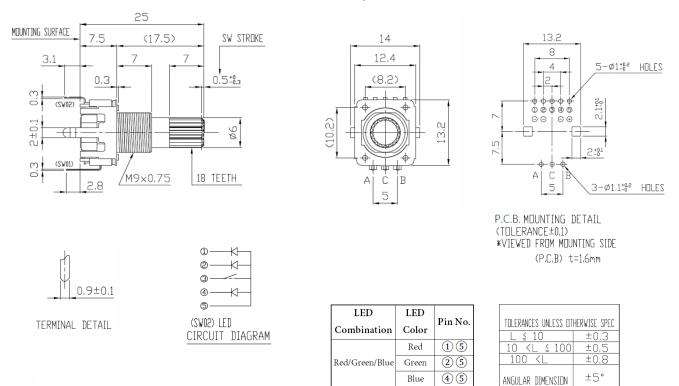

Page 7 of 10

Series 12CE Horizontal/Side Mount with Sleeve Bushing and 3-Color LED

Series 12CE Vertical/Rear Mount with Sleeve Bushing and 3-Color LED



2022-07-13 Rev. C

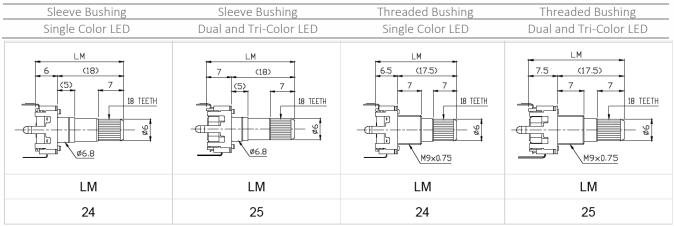

www.ctscorp.com

Series 12CE Horizontal/Side Mount with Threaded Bushing and 3-Color LED

Series 12CE Vertical/Rear Mount with Threaded Bushing and 3-Color LED

Unit: mm

2022-07-13 Rev. C


www.ctscorp.com

Page 9 of 10

Series 12CE Shaft Length and Trim Options

Knurled Shaft Trim

Flatted Shaft Trim

Sleeve E	Bushing	Sleeve Bushing		Threaded Bushing				Threaded Bushing				
Single Co	Single Color LED		Dual and Tri-Color LED		Single Color LED				Dual and Tri-Color LED			
							99 7					
LM	L1	LM	L1	LM	LB	L1	L2	LM	LB	L1	L2	
15	3	16	3	15	5	8.5	3	16	5	8.5	3	
17.5	5	18.5	5	17.5	5	11	5	18.5	5	11	5	
20	7	21	7	20	5	13.5	7	21	5	13.5	7	
25	12	26	12	25	5	18.5	12	26	5	18.5	12	