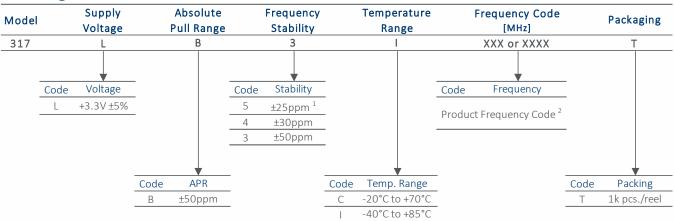

Model 317 HFF HCMOS VCXO

Features

- Ceramic Surface Mount Package
- Ultra-Low Phase Jitter Performance
- High Frequency Fundamental Crystal Design
- Frequency Range 100 170MHz *
- +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- Small Cells
- Wireless Communication
- Broadband Access
- SONET/SDH/DWDM
- Base Stations
- Ethernet/GbE/SyncE
- Digital Video
- Test and Measurement



Standard Frequencies	
- 100.00MHz	- 144.00MHz
- 104.40MHz	- 153.60MHz
- 122.88MHz	- 155.52MHz
- 125.00MHz	- 156.25MHz
- 136.00MHz	- 166.00MHz
* Check factory for availabi	ility of frequencies not listed.

Description

CTS Model 317 is a low cost, small size, high performance VCXO. Employing the latest IC technology, coupled with a high frequency fundamental crystal, M317 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

1] Only available with "C" temperature range.

2] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC# 008-0552-0 Rev. D

www.ctscorp.com

Page 1 of 7

Operating Conditions

SYMBOL V _{CC}	CONDITIONS	MIN	ТҮР	MAX	UNIT
V _{CC}	_				
		-0.5	-	5.0	V
V _C	-	-0.5	-	V _{CC}	V
V _{CC}	±5%	3.14	3.3	3.47	V
I _{CC}	Typical @ $C_L = 15 \text{ pF}, T_A = +25^{\circ}C$	-	20	30	mA
CL	-	-	-	15	pF
т		-20	. 25	+70	*6
IA	-	-40	+25	+85	°C
T _{STG}	-	-40	-	+100	°C
	V _{cc} I _{cc} C _L T _A	V _{CC} ±5% I _{CC} Typical @ C _L = 15 pF, T _A = +25°C C _L - T _A -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS MIN TYP MAX		MAX	UNIT	
Frequency Range	f _o	-	100 - 170		MHz	
Frequency Stability [Note 1]	$\Delta f/f_{O}$	±25ppm stability, -20°C to +70°C only		±ppm		
Absolute Pull Range [Note 2]	APR	-	50	-	-	±ppm
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V $_{CC}$ and V $_{C}$	-3	-	3	ppm

1.] Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and 1st year aging

2.] Minimum guaranteed frequency shift from f $_{\text{O}}$ over variations in temperature, aging, power supply and load.

Output Parameters

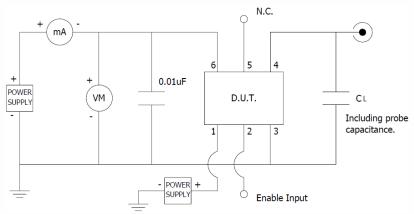
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT	
Output Type	-	-		HCMOS			
Quitaut Valtaga Lovala	V _{OH}	Logic '1' Level, CMOS Load	0.9V _{CC}	-	-	V	
Output Voltage Levels	V _{OL}	Logic '0' Level, CMOS Load	-	-	$0.1 V_{CC}$	V	
Output Duty Cycle	SYM	@ 50% Level	45	-	55	%	
Rise and Fall Time	T _r , T _f	@ 20%/80% Levels	-	1.5	3.0	ns	
Start Up Time	Ts	Application of V_{CC}	-	-	5	ms	
Enable Function							
Enable Input Voltage	V _{IH}	Pin 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V	
Disable Input Voltage	V _{IL}	Pin 2 Logic '0', Output Standby	-	-	$0.3V_{CC}$	V	
Standby Current	I _{STB}	Pin 2 Logic '0', Output Standby	-	-	10	μΑ	
Enable Time	T _{PLZ}	Pin 2 Logic '1'	-	-	2	ms	
Phase Jitter, RMS	tjrms	Bandwidth 12kHz - 20MHz	-	50	150	fs	
Phase Noise	-	See Typical Plots	-	-	-	-	

Enable Truth Table

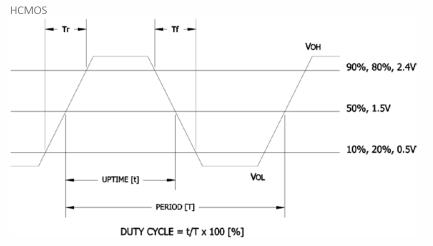
Pin 2	Pin 4
Logic '1'	Output
Open	Output
Logic 'O'	High Imp.

DOC#008-0552-0 Rev. D

www.ctscorp.com



Control Voltage

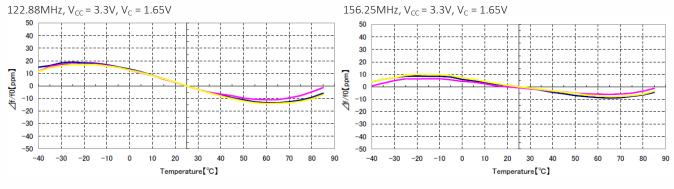

SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT	
V _C	-	0.00	1.65	3.30	V	
A 5 / 5	$V_{C} = 0.0V$		-155 to -75			
Δt/t _o	V _C = 3.3V			ppm		
L	Best Straight Line Fit	-	5	10	%	
Kv	Pull Sensitivity; @ +1.65V, +25°C	-	65	-	ppm/V	
Z _{Vc}	-	100	-	-	kOhms	
-	@ -3dB	20	-	-	kHz	
-	-		Positive		-	
	V _c Δf/f _o L K _V Z _{Vc}	$\frac{V_{c}}{\Delta f/f_{o}} \frac{-}{V_{c} = 0.0V}$ $\frac{V_{c} = 3.3V}{V_{c} = 3.3V}$ $\frac{L}{E} \frac{Best Straight Line Fit}{K_{V}} \frac{Pull Sensitivity; @ +1.65V, +25°C}{Z_{Vc}}$ $\frac{-}{-} \frac{@ -3dB}{V_{c}}$	$\begin{tabular}{ c c c c c } \hline V_{C} & - & 0.00 \\ \hline V_{C} & = 0.0V \\ \hline V_{C} & = 3.3V \\ \hline L & Best Straight Line Fit & - \\ \hline K_{V} & Pull Sensitivity; @ +1.65V, +25°C & - \\ \hline Z_{Vc} & - & 100 \\ \hline - & @ -3dB & 20 \\ \hline \end{tabular}$	$\frac{V_{c}}{V_{c}} = 0.0V + 0.00 = 1.65$ $\frac{V_{c} = 0.0V}{V_{c} = 3.3V} = 75 \text{ to } 155$ $\frac{L}{K_{V}} = 8 \text{ st Straight Line Fit} = 5$ $\frac{K_{V}}{V_{c}} = 1.65V, +25^{\circ}C = 65$ $\frac{Z_{Vc}}{V_{c}} = -100 = -$	$\frac{V_{C}}{V_{C}} = 0.0V + 0.00 + 0.0$	

Test Circuit

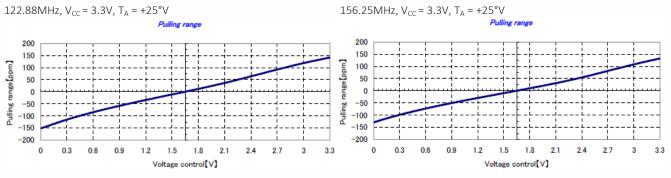
HCMOS

Output Waveform

DOC#008-0552-0 Rev. D

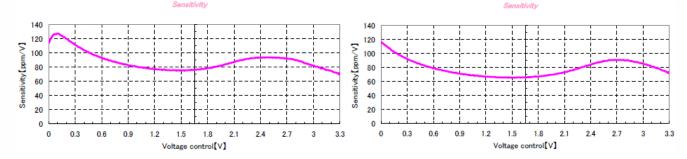

www.ctscorp.com

Page 3 of 7



Performance Data

Frequency Deviation - Over Temperature [typical]

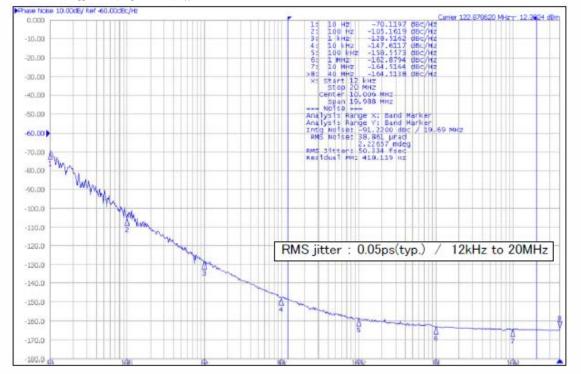

Frequency Deviation – Pulling Range [typical]

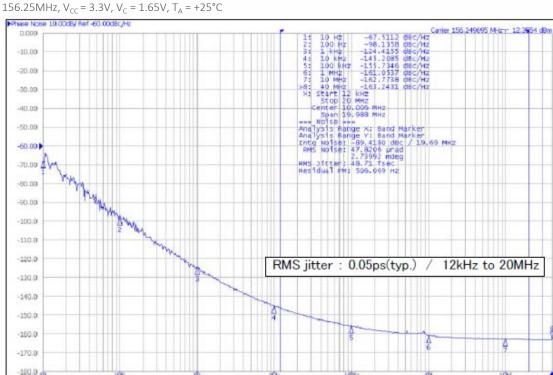
122.88MHz, V_{CC} = 3.3V, T_A = +25°V

156.25MHz, V_{CC} = 3.3V, T_A = +25°V

DOC#008-0552-0 Rev. D

www.ctscorp.com


Page 4 of 7

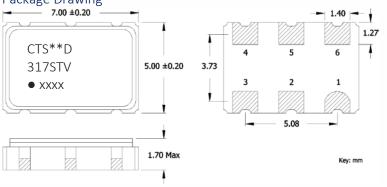


Performance Data

Phase Noise [typical]

122.88MHz, V_{CC} = 3.3V, V_{C} = 1.65V, T_{A} = +25°C

DOC#008-0552-0 Rev. D


www.ctscorp.com

Page 5 of 7

Mechanical Specifications

Recommended Pad Layout

Pin Assignments

Pin	Symbol	Function
1	V _C	Control Voltage
2	EOH	Enable
3	GND	Circuit & Package
4	Output	RF Output
5	N.C.	No Connect
6	V _{CC}	Supply Voltage

Table I - Date Code

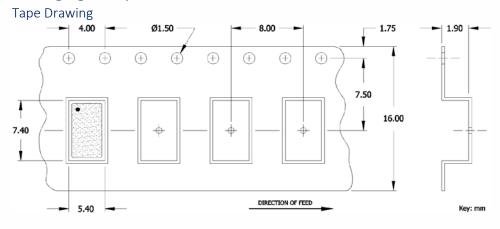
MONTH			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC		
YEAR		JAN	FED	WAR	AFR	IVIAT	1014	JOL	AUG	JEP	001	NUV	DEC			
2001	2005	2009	2013	2017	А	В	С	D	Е	F	G	Н	J	К	L	Μ
2002	2006	2010	2014	2018	Ν	Р	Q	R	S	Т	U	V	W	Х	Y	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k		m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	V	W	х	У	Z

Marking Information

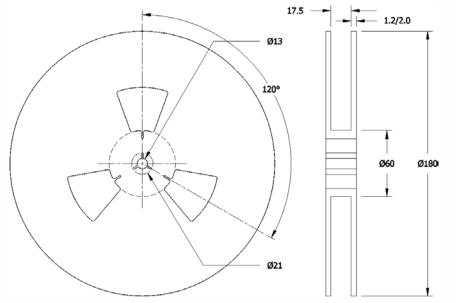
- 1. ** Manufacturing Site Code.
- 2. D Date Code. See Table I for codes.
- ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. V Voltage Code. L = 3.3V
- xxxx Frequency Code. 4-digits required for frequencies 100MHz and above.
 [See document 016-1454-0, Frequency Code Tables.]

Notes

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.


DOC# 008-0552-0 Rev. D

www.ctscorp.com


Page 6 of 7

Packaging - Tape and Reel

Reel Drawing

Notes

- 1. Device quantity is 1k pieces maximum per 180mm reel.
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.