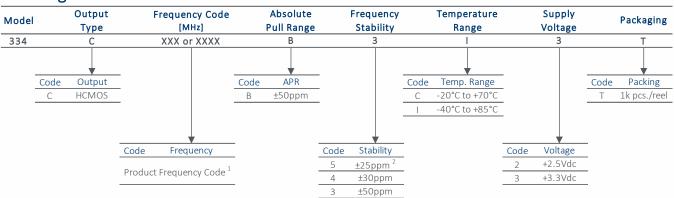

Model 334C Advanced PLL HCMOS VCXO

Features

- Ceramic Surface Mount Package
- Low Phase Jitter Performance, 600fs Typical
- Advanced PLL Design w/ Low Fundamental Crystal
- Frequency Range 10 250MHz *
- +2.5V or +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- Broadcast Video Systems
- Storage Area Networking
- Broadband Access
- Phase-Locked Loop
- Networking Equipment
- Ethernet/GbE/SyncE
- Fiber Channel
- Test and Measurement


Standard Frequencies

- 50.00MHz 122.88MHz 156.25MHz - 77.76MHz - 125.00MHz - 200.00MHz
- 100.00MHz 155.52MHz
- * See Page 7 for additional developed frequencies. Check with factory for availability of frequencies not listed.

Description

CTS Model 334C is a low cost, high performance PLL voltage controlled oscillator supporting HCMOS output. Employing the latest IC technology, M334C has excellent stability and low phase jitter performance.

Ordering Information

Notes:

- 1] Refer to document 016-1454-0, Frequency Code Tables.
 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.
- 2] Check factory availability when paired with "I" temperature code.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

Electrical Specifications

Operating Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Maximum Supply Voltage	aximum Supply Voltage V _{CC} -		-0.5	-	4.0	V	
Maximum Cantral Valtage	\/	V _{CC} = +2.5V	-0.5	-	3.0	\/	
Maximum Control Voltage	V _C	$V_{CC} = +3.3V$	-0.5	-	3.8	V	
Cupply Voltage	\ <i>\</i>	±5%	2.375	2.5	2.625	V	
Supply Voltage	V _{CC}	I370	3.135	3.3	3.465		
Supply Current	I _{cc}	Maximum Load	-	20	65	mA	
O	<u></u>		-20	.25	+70	°C	
Operating Temperature	T_A	-	-40	+25	+85	C	
Storage Temperature	T _{STG}	-	-55	-	+125	°C	

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Frequency Range	f_O	-	10 - 250			MHz
Frequency Stability [Note 1]	Δf/f _O	-		25, 30 or 50)	±ppm
Absolute Pull Range [Note 2]	APR	-	50	-	-	±ppm
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V _{CC}	-3	-	3	ppm

^{1.]} Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and 1st year aging.

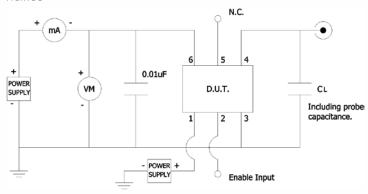
Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Output Type	-	-	HCMOS			-
Output Load	C_L	-	-	-	15	pF
Outrot Valta as Lavela	V _{OH}	CNACCL	0.9V _{CC}	-	-	
Output Voltage Levels	V_{OL}	CMOS Load	-	-	$0.1V_{CC}$	V
Output Duty Cycle	SYM	@ 50% Level	45	-	55	%
Rise and Fall Time	T _R , T _F	@ 20%/80% Levels, C _L = 15pF	-	5	10	ns
Start Up Time	T _S	Application of V _{CC}	-	3	5	ms
Enable Function [Tri-State]						
Enable Input Voltage	V_{IH}	Pin 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V
Disable Input Voltage	V_{IL}	Pin 2 Logic '0', Output Disabled	-	-	$0.3V_{CC}$	V
Disable Current	$I_{\rm IL}$	Pin 2 Logic '0', Output Disabled	-	16	22	mA
Enable Time	T_{PLZ}	Pin 2 Logic '1', Output Enabled	-	-	200	ns
Phase Jitter, RMS	tjrms	Bandwidth 12 kHz - 20 MHz	-	600	<1000	fs
Period Jitter, RMS	pjrms	-	-	3.0	-	ps
Period Jitter, pk-pk	pjpk-pk	-	-	30	-	ps

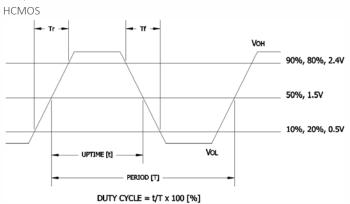
^{2.]} Minimum guaranteed frequency shift from f $_{\rm O}$ over variations in temperature, aging, power supply and load.

Electrical Specifications

Control Voltage


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Cantral Valtage	M	V _{CC} = 2.5V	0.2	1.25	2.3	V
Control Voltage	V _C	V _{CC} = 3.3V	0.3	1.65	3.0	V
		V _C = 0.2V		-60 to -180		ppm
Farmer on Bandadian	A E / E	V _C = 2.3V		60 to 180		
Frequency Deviation	Δf/f ₀ ——	V _C = 0.3V	-60 to -180			ppm
		V _C = 3.0V	60 to 180			
Linearity	L	Best Straight Line Fit	-	-	±15	%
Gain Transfer	K _V	Pull Sensitivity; @ +1.25V, +25°C Pull Sensitivity; @ +1.65V, +25°C	-	80	260	ppm/V
Input Impedance	nput Impedance Z _{Vc}		1	-	-	MOhms
Modulation Roll-off	-	@ -3dB 10		-	kHz	
Transfer Function	-	-		Positive		-

Enable Truth Table


Pin 2	Pin 4
Logic '1'	Output
Open	Output
Logic '0'	High Imp.

Test Circuit

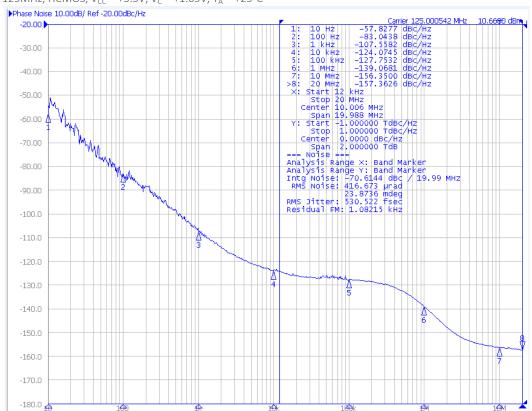
HCMOS

Output Waveform

DOC# 008-0581-1 Rev. A

www.ctscorp.com

Page 3 of 7



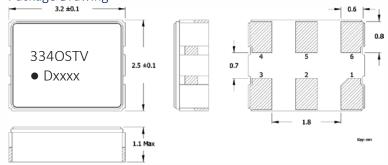
Electrical Specifications

Performance Data

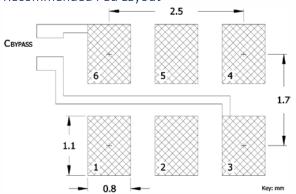
Phase Noise [typical]

125MHz, HCMOS, V_{CC} = +3.3V, V_{C} = +1.65V, T_{A} = +25°C

Phase Noise Tabulated


125MHz, HCMOS, V_{CC} = +3.3V, V_{C} = +1.65V, T_{A} = +25°C

PARAMETER	SYMBOL	CONDITIONS	TYP	UNIT
HCMOS @ 125.00MHz	!			
Phase Noise		Single Side Band		
		@ 10Hz	-57.8277	
		@ 100Hz	-83.0438	
		@ 1kHz	-107.5582	
	-	@ 10kHz	-124.0745	dBc/Hz
		@ 100kHz	-127.7532	
		@ 1MHz	-139.0681	
		@ 10MHz	-156.3500	
		@ 20MHz	-157.3626	
Phase Jitter, RMS	tjrms	Integration Bandwidth 12kHz - 20MHz	530.5330	fs



Mechanical Specifications

Package Drawing

Recommended Pad Layout

Pin Assignments

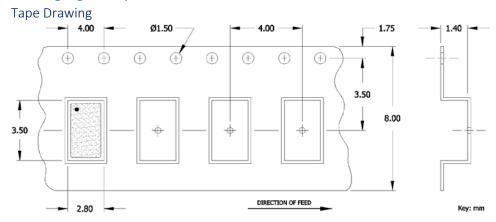
Pin	Symbol	Function
1	V _C	Voltage Control
2	EOH	Enable [tri-state]
3	GND	Circuit & Package Ground
4	Output	RF Output
5	N.C.	No Connect
6	V _{cc}	Supply Voltage

Table I - Date Code

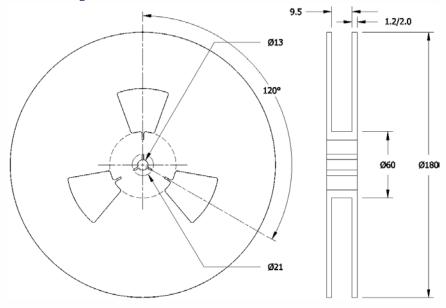
		1	монтн													
	YE	AR			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
2001	2005	2009	2013	2017	А	В	С	D	Е	F	G	Н	J	K	L	М
2002	2006	2010	2014	2018	N	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k	Ī	m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	V	W	Х	У	Z

Marking Information

- 1. O Output Type; C = HCMOS.
- 2. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 3. V Voltage Code; 3 = 3.3V, 2 = 2.5V.
- 4. D Date Code. See Table I for codes.
- 5. xxxx Frequency Code.
 - 3-digits, frequencies below 100MHz
 - 4-digits, frequencies 100MHz or greater


[See document 016-1454-0, Frequency Code Tables.]

Notes


- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- 2. Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.

Packaging - Tape and Reel

Reel Drawing

Notes

- 1. Device quantity is 1k pieces minimum and 3k pieces maximum per 180mm reel.
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.

Addendum

Additional Developed Frequencies - MHz

FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE
25.000000	250	150.000000	1500				
62.500000	625	153.600000	1536				
106.250000	1062	250.000000	2500				
132.000000	1320						
148.500000	1485						

Frequency Codes for Cover Page Table - MHz

FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE
50.000000	500	155.520000	1555
77.760000	777	156.250000	1562
100.000000	1000	200.000000	2000
122.880000	1228		
125.000000	1250		