

Model 377 HFF LVDS VCXO

Features

- Ceramic Surface Mount Package
- Ultra-Low Phase Jitter Performance
- High Frequency Fundamental Crystal Design
- Frequency Range 100 250MHz *
- +2.5V or +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- Small Cells
- Wireless Communication
- Broadband Access
- SONET/SDH/DWDM
- Base Stations
- Ethernet/GbE/SyncE
- Digital Video
- Test and Measurement

Standard Frequencies

- 100.00MHz 156.25MHz - 122.88MHz - 160.00MHz
- 125.00MHz 166.00MHz - 153.60MHz - 200.00MHz
- 155.52MHz 204.80MHz
- * Check with factory for availability of frequencies not listed.

Description

CTS Model 377 is a low cost, small size, high performance VCXO. Employing the latest IC technology, coupled with a high frequency fundamental crystal, M377 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

- 1] Check factory availability with "I" temperature range.
- 2] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.
- 3] Frequencies ≥200MHz, APR is ±30ppm.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC# 008-0560-0 Rev. D WWW.ctscorp.com Page 1 of 7

Operating Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Maximum Supply Voltage	V_{CC}	-	-0.3	-	5.0	V	
Maximum Control Voltage	V _C	-	-0.5	-	V _{CC}	V	
Supply Voltage V _{CC} ±5% 2.38 2.5 2	\/	150/	3.14	3.3	3.47	V	
	2.63	v					
Supply Current	I _{cc}	LVDS Load	-	20	55	mA	
Output Load	R_L	Between Outputs	-	100	-	Ohms	
On anating Tamp anatura	T.		-20	.25	+70	°C	
Operating Temperature	T_A	-	-40	+25	+85	Ċ	
Storage Temperature	T _{STG}	-	-40	-	+100	°C	

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Frequency Range	f _O	-	100 - 250			MHz
Frequency Stability [Note 1]	Δf/f _O	±25ppm stability, -20°C to +70°C only	25, 30 or 50			±ppm
Absolute Pull Range [Note 2]	APR	Frequencies <200MHz	50	-	-	±ppm
[NOTE 2]	APR	Frequencies ≥200MHz	30	-	-	±ppm
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V_{CC} and V_{C}	-3	-	3	ppm

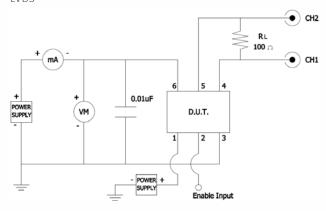
^{1.]} Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and 1st year aging.

Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Output Type	-	-		LVDS		-
Output Valtage Levels	V_{OH}	LVDS Load	-	1.43	1.60	V
Output Voltage Levels	V_{OL}	LVDS Load	0.90	1.10	-	V
Differential Output Voltage	V_{OD}	R _L = 100 Ohms	247	350	454	mV
Offset Voltage	V_{OS}	R _L = 100 Ohms	1.125	1.25	1.375	V
Output Duty Cycle	SYM	@ 1.25V	45	-	55	%
Rise and Fall Time	T_R , T_F	@ 20%/80% Levels	-	0.4	1.0	ns
Start Up Time	T_S	Application of V_{CC}	-	5	10	ms
Enable Function						
Enable Input Voltage	V_{IH}	Pin 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V
Disable Input Voltage	V_{IL}	Pin 2 Logic '0', Output Disabled	-	-	$0.3V_{CC}$	V
Standby Current	I_{STB}	Pin 2 Logic '0', Output Standby	-	-	10	μΑ
Enable Time	T_{PLZ}	Pin 2 Logic '1'	-	-	20	μs
Phase Jitter, RMS	tjrms	Bandwidth 12kHz - 20MHz	-	70	200	fs
Phase Noise	-	See Typical Plots	-	-	-	-

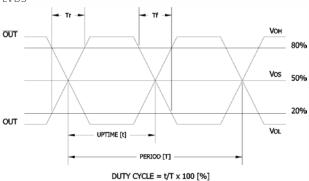
 $^{2.] \ \ \}text{Minimum guaranteed frequency shift from foover variations in temperature, aging, power supply and load.}$

Enable Truth Table


Pin 2	Pin 4 & 5	Pin 2	Pin 4 & 5	Pin 2	Pin 4 & 5
Logic '1'	Output	Open	Output	Logic '0'	High Imp.

Control Voltage

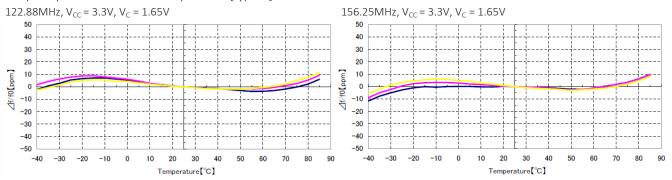
PARAMETER	R SYMBOL CONDITIONS		MIN	TYP	MAX	UNIT	
Control Voltage		V _{CC} = +3.3V	0.00	1.65	3.30	V	
	V _C	$V_{CC} = +2.5V$	0.25	1.25	2.25	V	
Frequency Deviation		V _C = 0.0V		-155 to -75			
	A.E./E	$V_{C} = +3.3V$		ppm			
	$\Delta f/f_O$ -	V _C = 0.0V					
		$V_{C} = +2.5V$		50 to 140		ppm	
Linearity	nearity L		-	5	10	%	
Gain Transfer	V	Pull Sensitivity; @ +1.65V, +25°C	-	75	-	ppm/V	
	K _V	Pull Sensitivity; @ +1.25V, +25°C	-	75	-	ppm/V	
Input Impedance Z _{Vc}		-	10		-	MOhms	
Modulation Roll-off	-	@ -3dB	20	-	-	kHz	
Transfer Function	-	-		Positive		-	


Test Circuit

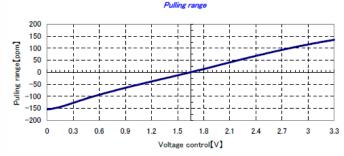
LVDS

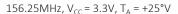
Output Waveform

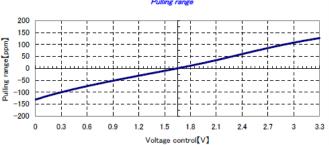
DOC# 008-0560-0 Rev. D


www.ctscorp.com

Page 3 of 7

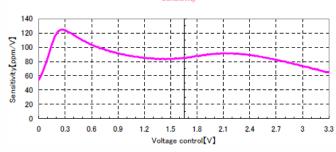

Performance Data

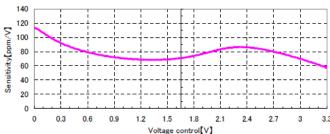

Frequency Deviation – Over Temperature [typical]



Frequency Deviation – Pulling Range [typical]

122.88MHz, $V_{CC} = 3.3V$, $T_A = +25^{\circ}V$

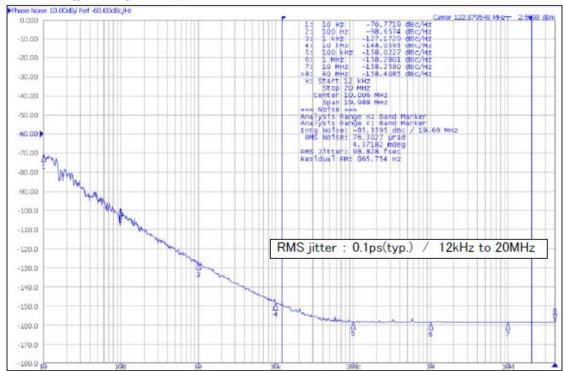


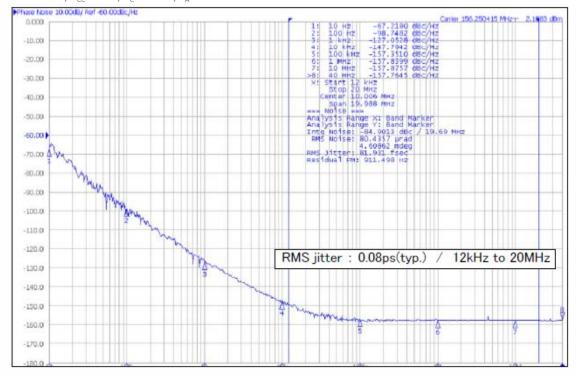


Frequency Deviation – Gain Transfer [typical]

122.88MHz, $V_{CC} = 3.3V$, $T_A = +25$ °V

156.25MHz, $V_{CC} = 3.3V$, $T_A = +25^{\circ}V$



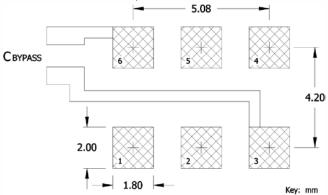

Performance Data

Phase Noise [typical]

122.88MHz, $V_{CC} = 3.3V$, $V_{C} = 1.65V$, $T_{A} = +25$ °C

156.25MHz, $V_{CC} = 3.3V$, $V_{C} = 1.65V$, $T_{A} = +25$ °C

Mechanical Specifications


Package Drawing 7.00 ±0.20 CTS**D 377STV 5.00 ±0.20 3.73 XXXX 5.08 1.70 Max Key: mm

Marking Information

- 1. ** Manufacturing Site Code.
- 2. D Date Code. See Table I for codes.
- 3. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. V Voltage Code. L = 3.3V, N = 2.5V
- 5. xxxx Frequency Code. 4-digits required for frequencies 100MHz and above.

[See document 016-1454-0, Frequency Code Tables.]

Recommended Pad Layout

Notes

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- 2. Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.

Pin Assignments

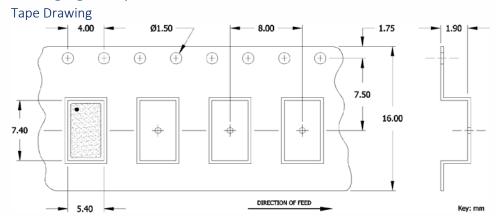
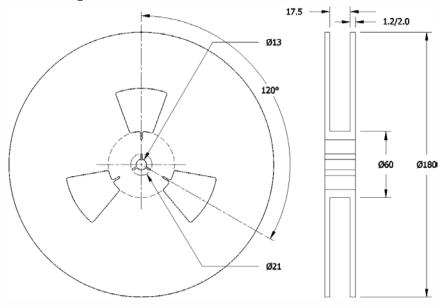

Pin	Pin Symbol Function						
1	V_{C}	Control Voltage					
2	EOH	Enable					
3	GND	Circuit & Package					
4	Output	RF Output					
5	Output	RF Output, Complementary					
6	V _{CC}	Supply Voltage					

Table I - Date Code


MONTH YEAR		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC			
		JAN	FED	WAK	APK	IVIAT	JON	JOL	AUG	SEP	UCI	NOV	DEC			
2001	2005	2009	2013	2017	А	В	С	D	Е	F	G	Н	J	K	L	М
2002	2006	2010	2014	2018	N	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k	I	m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	V	W	Х	У	Z

Packaging - Tape and Reel

Reel Drawing

Notes

- 1. Device quantity is 1k pieces maximum per 180mm reel.
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.